Session "Mathematics for Horizon2020" at 14:00 – 14:45 on Tuesday, September 27, 2016

Aim of the session is for the mathematical stakeholders to make their case to the proposers at large, and demonstrate that they can be useful and an interesting party in the relevant calls.

The programme

<table>
<thead>
<tr>
<th>start</th>
<th>end</th>
<th>topic</th>
<th>message</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>14:05</td>
<td>Mathematics for Europe: the consultation results</td>
<td>there is a lot of potential and mathematics relates to a wealth of topics</td>
<td>Anni Hellman (DG Connect)</td>
</tr>
<tr>
<td>14:05</td>
<td>14:10</td>
<td>What mathematicians have to offer: an overview of the potential topics</td>
<td>an overview of what kind of mathematics are relevant and present in the calls and where to find it</td>
<td>Wil Schilders (TU Eindhoven)</td>
</tr>
<tr>
<td>14:10</td>
<td>14:15</td>
<td>ICT-31 call on Micro- and nanoelectronics</td>
<td></td>
<td>Wil Schilders</td>
</tr>
<tr>
<td>14:15</td>
<td>14:20</td>
<td>FET Proactive - boosting emerging technologies, 'mathematical modelling'</td>
<td>mainly in the context of "new technologies for energy"</td>
<td>Laurent Decreusefond</td>
</tr>
<tr>
<td>14:20</td>
<td>14:25</td>
<td>Smart, green and integrated transport: MG-5.4-2017 potential of the physical internet</td>
<td>simulation modelling, topology</td>
<td>Laurent Decreusefond</td>
</tr>
<tr>
<td>14:25</td>
<td>14:30</td>
<td>FOF-12-2017: ICT Innovation for Manufacturing SMEs</td>
<td>Mathematical problems in CPS, such as real-time route planning for AGVs/light-weight robots in uncertain environment, scheduling with real time data, semi-automatic building of simulation models</td>
<td>Tamás Kis</td>
</tr>
<tr>
<td>14:30</td>
<td>14:35</td>
<td>Innovative ICT and mathematical solutions for future logistics operations as in MG-5.2-2017 and MG-8.2-2017</td>
<td>Showing the potential of mathematics and ICT for improving the quality of solutions for problems addressed in the calls mentioned</td>
<td>Alexander Martin</td>
</tr>
</tbody>
</table>
Material to distribute in the session: the report and a list of topics prepared for reference with potential for mathematicians.

Marketing of the session: Open. How to attract the proposers to come to the session? To discuss.

Possibilities:

1. To ask to mention this session in all the sessions listed below. When the Commission people describe the topic, they could go to listen to mathematics session.

2. To participate in the relevant sessions and promote the session on mathematics for the proposers present.
Potential topics for mathematicians

List compiled by Volker Mehrmann and Zoltan Horvath

1. FETHPC-02-2017: Transition to Exascale Computing Specific Exascale computing; mathematics and algorithms for extreme scale HPC systems.

2. Mathematics and algorithms for extreme scale HPC systems and applications working with extreme data

3. FETHPC-03-2017: Exascale HPC ecosystem development Coordination of the Exascale HPC strategy and International Collaborations

4. NMBP-25-2017: Next generation system integrating tangible and intangible materials model components to support innovation in industry Ability for manufacturing companies (end-users) to do an effective search of numerical tools and/or providers of numerical simulations who could best suit their needs

5. NMBP-35-2017: Innovative solutions for the conservation of 20th century cultural heritage While modelling and simulation based approaches in the development of advanced materials and devices play nowadays an important role, there is a need for development in the area of CH conservation

6. SC1-PM-15-2017: Personalised coaching for well-being and care of people as they age Multi-disciplinary research and include intelligent algorithms capable of reasoning, autonomous learning and adaptation to personal needs

7. SC1-PM-16-2017: In-silico trials for developing and assessing biomedical products Innovative in-silico trials for designing, developing and assessing drugs, radiation and other biomedical and bioactive products

9. Assessment of the economic, political, epistemological, ethical and legal premises and implications of big data practices; Methods and re-usable tools for policy modelling and simulation

10. DS-06-2017: Cryptography Functional encryption solutions

12. FOF-12-2017: ICT Innovation for Manufacturing SMEs. HPC Cloud-based modelling, simulation and analytics services with special emphasis on sustained service models; on providing real-time support; and on addressing comprehensively security and privacy issues at all levels

13. ICT FOR THE FACTORIES OF THE FUTURE Computer modelling and simulations able to aggregate various information sets e.g. molecular, biochemical, medical imaging, social, lifestyle, economic, occupational, microbiome, environmental, developmental, psychological, gender etc.
14. MG-5.2-2017: Innovative ICT solutions for future logistics operations. Algorithms to increase both load factors and optimise the planned delivery route, based on the specifications of Modular Load Units, the vehicle or container and all required destinations.

15. MG-5.4-2017: Potential of the Physical Internet. Develop simulation and modelling tools to assess the possible impact of the PI, including the socio-economic aspects; Model a future. Physical Internet network topology and assess the benefits it could generate in terms of carbon footprint, throughput times and cost reductions.

17. MG-8.2-2017: Big data in Transport: Research opportunities, challenges and limitations. From freight transport and supply chain optimisation to evacuation modelling and crowd dynamics under extreme phenomena, and from short-term traffic forecasting to travel behavioural research and the use of social media for efficient transport operations, the so-called trend of big data has created a wide spectrum of challenges and opportunities in the field of transport research.

18. ICT-31: Micro- and nanoelectronics technologies. It is essential to prepare for the future of the electronics industry the next wave of industry-relevant technologies to extend the limits (technological and/or economic) mainstream technologies will be facing in the medium term. This is essential to maintain and increase Europe's longer-term capacity in the design and manufacturing of these technologies and to strengthen the competitiveness and market leadership of the many industries innovating through these technologies. Mathematics has always been, and continues to be, an essential driver for this development.